EDC7 MAN fault codes list PDF

MAN trucks PDF manuals

81

Pressure difference or the difference between the relative pressure of exhaust gases

Check for poor contact or reliability rate of change of pressure of exhaust gases; too high or low pressure difference

Fuel supply pressure

94

Check for fuel pressure at normal plot (a blocked filter too high low blood pressure in the suction piping, a faulty fuel pump, air in the system)

Reaction system: problems in the supply of fuel, the engine may stop

98

Oil level

Check for too high or too low oil

Note. Naval engines only

100

Oil pressure

Check for low oil pressure, bad contact or reliability of speed change oil pressure

102

Boost pressure after the heat sink (naduvochnoj trumpet)

Check for poor contact or the veracity of the charge pressure rate of change. Change compared to simulated boost pressure at a temperature < threshold. Comparison of atmospheric pressure signal 105

Temperature of air naduvochnogo before cylinder intake (after AGR)

Check for inadequate contact or reliability rate of change naduvochnogo air, too high or low temperature

108

Atmospheric pressure

Check for poor contact or reliability of differential rate of change of atmospheric pressure 110

Coolant temperature

Check for inadequate contact or reliability of speed change the coolant temperature is too high or low temperature

Reaction system: lower torque at too high a temperature

168

Battery voltage

Control voltage limits

171

Ambient air temperature

Check for poor contact or reliability rate of change in the air temperature surrounding Wednesday, too high or low temperature

173

Exhaust gas temperature before handling to reduce toxicity

Check for a loose contact or the veracity of the rate of change of exhaust gases, too high or too low temperature

Note. Not for built-in engines

175

Oil temperature

190

Engine speed

Defect in the chain of the rotation frequency of the crankshaft or camshaft

609

CAN module 1

Off condition tyres CAN module 1 Reaction system: offline (= idle)

651

BANK 1 INJECTOR 1 (4-cylinder engine: cylinder 1; 6-cylinder engine: cylinder 1; 8-cylinder engine Chief: 1 cylinder, slave cylinder: 5; 10-cylinder engine Chief: 1 cylinder, slave cylinder: 6; 12-cylinder engine main: 1 cylinder, slave cylinder: 12)

Check control unit circuit — wiring harness-injector for breaks, short-circuits or other electrical failures

No signal (FMI 4) = gap conductors

Too high (FMI 1) = short circuit or other electrical failure

Note. Depending on the version of the EDC control unit there are various response systems:

Reaction system of EDC 7 C3:

All FMI considered here General Electric failures. No signal failure usually refers to a suitable circuit through SPN. All the other glitches appear in strict accordance with the cylinder, i.e. displays some circuit current through SPN (for example, 651), which may be affected by other current circuit of the cylinder block (for example, 653 or 655)

When breaking circuit conductors shall be deactivated only a faulty injector, i. e. this injection cylinder stops

Consequence: overclocking test (TRUP), which identifies the affected circuit.

Short circuit current circuit in one injector disables all injectors affected by the block, i.e. does the block cylinders injection stops 1.

Consequence: testing the dispersal (TRUP) terminates the error row engines (for example, 6-cylinder in-line engine only runs with three cylinders and when only the TRUP with two cylinders).

Reaction system of EDC 7 C32:

No signal failure usually refers to a suitable circuit through SPN. All the other glitches appear only in strict accordance with the block, i.e. displays all SPN (651, 653 and 655) this block, although, perhaps, affected only one circuit

When breaking circuit conductors shall be deactivated only a faulty injector, i. e. this injection cylinder stops

Consequence: overclocking test (TRUP), which identifies the affected circuit.

Short circuit current circuit in one injector disables all injectors affected block, IE. stops all injection cylinder block 1.

Consequence: testing the dispersal (TRUP) terminates the error row engines (for example, 6-cylinder in-line engine only runs with three cylinders and when only the TRUP with two cylinders). 652

BANK 2 INJECTOR 1 (4-cylinder engine: cylinder 3; 6-cylinder engine: 5 cylinder; 8-cylinder engine: cylinder head 2 subject: cylinder 7; 10-cylinder engine: 5 cylinder master, slave cylinder; 10:12-cylinder engine Chief: 5 cylinder, slave cylinder: 8)

Check control unit circuit — wiring harness-injector for breaks, short-circuits or other electrical failures No signal (FMI 4) = gap conductors

Too high (FMI1) = short circuit or other electrical failure

Note. Depending on the version of the EDC control unit there are various response systems: Reaction system of EDC 7 C3:

All FMI considered here General Electric failures. No signal failure usually refers to a suitable circuit through SPN. All the other glitches appear in strict accordance with the cylinder, i.e. displays some circuit current through SPN (for example, 652), which may be affected by other current circuit of the cylinder block (for example, or 654 656)

When breaking circuit conductors shall be deactivated only a faulty injector, i. e. this injection cylinder stops

Consequence: overclocking test (TRUP), which identifies the affected circuit.

Short circuit current circuit in one injector disables all injectors affected block, IE. stops all injection cylinders block 2.

Consequence: testing the dispersal (TRUP) terminates the error row engines (for example, 6-cylinder in-line engine only runs with three cylinders and when only the TRUP with two cylinders).

Reaction system of EDC 7 C32:

No signal failure usually refers to a suitable circuit through SPN. All the other glitches appear only in strict accordance with the block, i.e. displays all SPN (652, 654 and 656) this block, although, perhaps, affected only one circuit

When breaking circuit conductors shall be deactivated only a faulty injector, i. e. this injection cylinder stops

Consequence: overclocking test (TRUP), which identifies the affected circuit.

Short circuit current circuit in one injector disables all injectors affected block, IE. stops all injection cylinders block 2.

Consequence: testing the dispersal (TRUP) terminates the error row engines (for example, 6-cylinder in-line engine only runs with three cylinders and when only the TRUP with two cylinders).
653

BANK 1 INJECTOR 2 (4-cylinder engine: 4 cylinder; 6-cylinder engine: cylinder 3; 8-cylinder engine: cylinder head, 3 cylinder subject: 6; 10-cylinder engine: cylinder head 2 subject: cylinder 7; 12-cylinder engine main: 3 cylinder, slave cylinder: 10)

Check control unit circuit — wiring harness-injector for breaks, short-circuits or other electrical failures

No signal (FMI 4) = gap conductors

Too high (FMI1) = short circuit or other electrical failure

Note. Depending on the version of the EDC control unit there are various response systems:

Reaction system of EDC 7 C3:

All FMI considered here General Electric failures. No signal failure usually refers to a suitable circuit through SPN. All the other glitches appear in strict accordance with the cylinder, i.e. displays some circuit current through SPN (for example, 653), which may be affected by other current circuit of the cylinder block (for example, 651 or 655)

When breaking circuit conductors shall be deactivated only a faulty injector, i. e. this injection cylinder stops

Consequence: overclocking test (TRUP), which identifies the affected circuit.

Short circuit current circuit in one injector disables all injectors affected block, IE. stops all injection cylinder block 1.

Consequence: testing the dispersal (TRUP) terminates the error row engines (for example, 6-cylinder in-line engine only runs with three cylinders and when only the TRUP with two cylinders).

Reaction system of EDC 7 C32:

No signal failure usually refers to a suitable circuit through SPN. All the other glitches appear only in strict accordance with the block, i.e. displays all SPN (651, 653 and 655) this block, although, perhaps, affected only one circuit

When breaking circuit conductors shall be deactivated only a faulty injector, i. e. this injection cylinder stops

Consequence: overclocking test (TRUP), which identifies the affected circuit.

Short circuit current circuit in one injector disables all injectors affected block, IE. stops all injection cylinder block 1.

Consequence: testing the dispersal (TRUP) terminates the error row engines (for example, 6-cylinder in-line engine only runs with three cylinders and when only the TRUP with two cylinders). 654

BANK 2 INJECTOR 2 (4-cylinder engine: cylinder 2; 6-cylinder engine: 6 cylinder; 8-cylinder engine: 4 cylinder, master slave: cylinder 8; 10-cylinder engine: cylinder head, 3 cylinder subject: 8; 12-cylinder engine main: 6 cylinder, slave cylinder: 7)

Check control unit circuit — wiring harness-injector for breaks, short-circuits or other electrical failures No signal (FMI 4) = gap conductors

Too high (FMI1) = short circuit or other electrical failure

Note. Depending on the version of the EDC control unit there are various response systems: Reaction system of EDC 7 C3:

All FMI considered here General Electric failures. No signal failure usually refers to a suitable circuit through SPN. All the other glitches appear in strict accordance with the cylinder, i.e. displays some circuit current through SPN (for example, 654), which may be affected by other current circuit of the cylinder block (for example, or 656 652)

When breaking circuit conductors shall be deactivated only a faulty injector, i. e. this injection cylinder stops

Consequence: overclocking test (TRUP), which identifies the affected circuit.

Short circuit current circuit in one injector disables all injectors affected block, IE. stops all injection cylinders block 2.

Consequence: testing the dispersal (TRUP) terminates the error row engines (for example, 6-cylinder in-line engine only runs with three cylinders and when only the TRUP with two cylinders). Reaction system of EDC 7 C32:

No signal failure usually refers to a suitable circuit through SPN. All the other glitches appear only in strict accordance with the block, i.e. displays all SPN (652, 654 and 656) this block, although, perhaps, affected only one circuit

When breaking circuit conductors shall be deactivated only a faulty injector, i. e. this injection cylinder stops

Consequence: overclocking test (TRUP), which identifies the affected circuit.

Short circuit current circuit in one injector disables all injectors affected block, IE. stops all injection cylinders block 2.

Consequence: testing the dispersal (TRUP) terminates the error row engines (for example, 6-cylinder in-line engine only runs with three cylinders and when only the TRUP with two cylinders).
655

BANK 1 INJECTOR 3 (6-cylinder engine: cylinder 2; 10-cylinder engine: 4 cylinder, master slave cylinder: 9; 12-cylinder engine: cylinder head 2 subject: cylinder 11)

Check control unit circuit — wiring harness-injector for breaks, short-circuits or other electrical failures No signal (FMI 4) = gap conductors

Too high (FMI1) = short circuit or other electrical failure

Note. Depending on the version of the EDC control unit there are various response systems: Reaction system of EDC 7 C3:

All FMI considered here General Electric failures. No signal failure usually refers to a suitable circuit through SPN. All the other glitches appear in strict accordance with the cylinder, i.e. displays some circuit current through SPN (for example, 655), which may be affected by other current circuit of the cylinder block (for example, or 653 651)

When breaking circuit conductors shall be deactivated only a faulty injector, i. e. this injection cylinder stops

Consequence: overclocking test (TRUP), which identifies the affected circuit.

Short circuit current circuit in one injector disables all injectors affected block, IE. stops all injection cylinder block 1.

Consequence: testing the dispersal (TRUP) terminates the error row engines (for example, 6-cylinder in-line engine only runs with three cylinders and when only the TRUP with two cylinders).

Reaction system of EDC 7 C32:

No signal failure usually refers to a suitable circuit through SPN. All the other glitches appear only in strict accordance with the block, i.e. displays all SPN (651, 653 and 655) this block, although, perhaps, affected only one circuit

When breaking circuit conductors shall be deactivated only a faulty injector, i. e. this injection cylinder stops

Consequence: overclocking test (TRUP), which identifies the affected circuit.

Short circuit current circuit in one injector disables all injectors affected block, IE. stops all injection cylinder block 1.

Consequence: testing the dispersal (TRUP) terminates the error row engines (for example, 6-cylinder in-line engine only runs with three cylinders and when only the TRUP with two cylinders).

BANK 2 INJECTOR 3 (6-cylinder engine: 4 cylinder; 12-cylinder engine: 4 cylinder, master slave cylinder: 9)

Check control unit circuit — wiring harness-injector for breaks, short-circuits or other electrical failures No signal (FMI 4) = gap conductors

Too high (FMI1) = short circuit or other electrical failure

Note. Depending on the version of the EDC control unit there are various response systems: Reaction system of EDC 7 C3:

All FMI considered here General Electric failures. No signal failure usually refers to a suitable circuit through SPN. All the other glitches appear in strict accordance with the cylinder, i.e. displays some circuit current through SPN (for example, 656), which may be affected by other current circuit of the cylinder block (for example, or 656 652)

When breaking circuit conductors shall be deactivated only a faulty injector, i. e. this injection cylinder stops

Consequence: overclocking test (TRUP), which identifies the affected circuit.

Short circuit current circuit in one injector disables all injectors affected block, IE. stops all injection cylinders block 2.

Consequence: testing the dispersal (TRUP) terminates the error row engines (for example, 6-cylinder in-line engine only runs with three cylinders and when only the TRUP with two cylinders).

Reaction system of EDC 7 C32:

No signal failure usually refers to a suitable circuit through SPN. All the other glitches appear only in strict accordance with the block, i.e. displays all SPN (652, 654 and 656) this block, although, perhaps, affected only one circuit

When breaking circuit conductors shall be deactivated only a faulty injector, i. e. this injection cylinder stops

Consequence: overclocking test (TRUP), which identifies the affected circuit.

Short circuit current circuit in one injector disables all injectors affected block, IE. stops all injection cylinders block 2.

Consequence: testing the dispersal (TRUP) terminates the error row engines (for example, 6-cylinder in-line engine only runs with three cylinders and when only the TRUP with two cylinders).

Time/date: invalid value of seconds FFR sends invalid numerical value

Response: there is no indication of time, in seconds.

960

Time/date: incorrect minutes value FFR sends an invalid numeric value

Response: there is no indication of 961 time in minutes.

Time/date: incorrect hours value FFR sends an invalid numeric value

Response: there is no indication of the time on the clock.

962

Time/date: invalid value days FFR sends an invalid numeric value

Response: there is no indication of the time of day.

963

Time/date: invalid value of months FFR sends an invalid numeric value

Response: there is no indication of the time for months.

964

Time/date: invalid value of years FFR sends an invalid numeric value

Response: there is no indication of the time of year.

1079

Nutrition for pressurized sensor

Check for a short circuit by mass or + Ubat and rupture of conductors

Response: in some cases, the sensor does not give a value or gives wrong values. DBV opens, the engine continues working with 800 bar pressurized. Limitation: D08:100 mg/day, D20:150 mg/day, D26 and D28:180 mg/day

1080

Nutrition sensor low pressure fuel pressure sensor pressure sensor oil pressure and relative pressure sensor exhaust gases

Check for a short circuit by mass or + Ubat and rupture of conductors

Response: in some cases, the sensor does not give a value or gives wrong values.

1131

Charge air temperature after the heat sink (nadduvochnoj trumpet)

Check for inadequate contact or the veracity of the rate of change of charging air, too high or low temperature

2039

FFR1: timeout

FFR1 message is not accepted. Reaction system: offline (= idle)

3004

AGR: remaining deviation adjustable values

Specified flap position in terms of inclusion does not coincide with the actual situation according to gerkonu

3007

DM4-invalid request

Invalid query FFR send DM4-message (drive failures)

Response: read the drive failure is impossible

3009

Exceeding the rated engine speed

Check the rotational speed limit exceeded

Reaction system: Injection is blocked until the engine speed drops below the specified threshold number of revolutions. Limitation of D20 and D26:

2800 min-1

3014

The main relay (control unit)

Fail if after you disconnect the terminals of the control unit 15 still energized after a certain time.

Response: No. Hang the main relay leads to progressive battery

3016

FFR1: malfunction in binary, 0-amount due to engine brakes

FFR1 passes an invalid numeric value.

Reaction system: Motor brake does not work.

3017

FFR1: error in the binary digit of the given moment

FFR sends an invalid numeric value Reaction system: engine idling mode

3018

https://truckmanualshub.com/ FFR1: error in the binary digit limit regulator-ID parameter FFR1 passes invalid numeric value. The reaction of the system: turn on the block parameters regulation "0" 3020 FFR1: malfunction in binary digit setpoints EDR FFR1 passes an invalid numeric value. Reaction system: reduction of EDR is canceled. 3022 FFR1: Setpoint ZDR FFR1 passes an invalid numeric value. Reaction system: setpoint ZDR is installed on 0 min-1, i. e. engine not ZDR mode FFR1: error in the binary digit "MEOS" (instant speeding engine) FFR1 passes an invalid numeric value. Response: request "MEOS is cancelled 3024 FFR1: malfunction in binary, the query off of linear function FFR1 passes an invalid numeric value. Reaction system: Internal line functions EDC reactivated. FFR1: verification of control bits (reserved bits and bytes) FFR1 does not pass the "1" in the reserved field Reaction system: no 3029 FFR2: malfunction in binary, idling setting FFR2 passes an invalid numeric value. The reaction of the system: the motor moves to the inner idling speed EDC. 3030 FFR2: error in the binary digit limit regulator-ID parameter FFR2 passes an invalid numeric value. The reaction of the system: turn on the block parameters LLR "0" 3031 FFR2: LLR Setting too high FFR2 asks speed to idle more than 800 min-1. Reaction system: adjustable maximum idling speed (800 min-1). 3032 FFR2: malfunction in binary, the offline request FFR2 passes an invalid numeric value. The reaction of the system: the system of EDC goes offline (idling) 3033 FFR2: error in the binary digit start request FFR2 passes an invalid numeric value. Response: no initiation of starter. 3034 FFR2: malfunction in binary, engine shutdown request FFR2 passes an invalid numeric value. Reaction system: Engine does not stop through the FFR. 3035 FFR2: verification of control bits (bits and bytes reserved FFR2 does not pass the "1" in the reserved field Reaction system: no 3038 FFR3: error in the binary digit information about parking lot FFR3 sends an invalid numeric value. Reaction system: despite the stalled car is given a moving car, "programming the control unit it is possible only when the termination CAN

3039

FFR3: verification of control bits (reserved bits and bytes)

FFR3 does not pass the "1" in the reserved field

Reaction system: no

3045

Defective Starter initiator

Battery voltage drop at start-up too little

Response: crash chain starter. Engine start (Starter relay defect defect IMR, defect entries).

3046

Atmospheric pressure sensor

Control voltage limits and AD blocking

Response: If the boost pressure sensor is defective: nominal value 1000 mbar, otherwise similar to the

boost pressure at idle

3063

Inertia phase not completed

The last two run-on ended incorrectly

3064

Offline EDC

Offline error query

Reaction system: offline (= idle)

3069

Backup rotation speed control

A separate calculation is too speed significantly deviates from the actual engine speed

System reaction: recovery (reset control unit)

3076

Unlocking immobiliser: not enough volume due to invalid FFR-ID

EDC control unit receives an invalid ID number from FFR

Reaction system: Starter hook, EDC does not give a signal to the volume, the engine does not start.

3077

Unlocking immobiliser: not enough volume due to timeout when sending the FFR-ID

Sending FFR-ID from FFR EDC control unit within the time limit is interrupted with a State of readiness had not yet

achieved, i.e. EDC control unit does not recognize non-FFR ID for a set period of time

Reaction system: Starter hook, EDC does not give a signal to the volume, the engine does not start.

3081

Disabling charge pressure regulator

Pressure setpoint adjuster cannot be adjusted

Response: reduced speed, reducing torque up to 1800 rpm and 100 mg/day

3082

Reliability of the oil pressure sensor

Gauge shows pressure in static oil > 500 mbar or when the engine is running a similar oil pressure with different values of frequency of rotation.

3083

Reliability of pressurized sensor

Checking the reduction of arterial pressure when engine to atmospheric pressure

3085

Post Vehicle distance incorrect

Absolute traversed section is not available for saving the fault in the Registrar as a condition of environment Wednesday

Reaction system: FFR or Tachograph not convey the message Vehicle Distance.

3086

The end position of the EGR actuator

Checking the voltage limits (supply voltage and voltage sensors) and AD blocking

Reaction/comment: active system of exhaust gas recirculation is specified as equivalent. Not for builtin engines

3087

Oil pressure sensor

Checking the voltage limits (supply voltage and voltage sensors) and AD blocking

Response: extradition equivalent: 1 bar

3088

Discharge pressure sensor after the radiator (nadduvochnoj trumpet)

Checking the voltage limits (supply voltage and voltage sensors) and AD blocking

Reaction system: issuing simulated boost pressure as equivalent

รกรด

Charge air temperature sensor before cylinder intake (after AGR)

Checking the voltage limits (supply voltage and voltage sensors) and AD blocking

3091

Coolant temperature sensor

Check the limits of voltage (voltage) and AD blocking

Response: extradition equivalent: 100.4° c, 10% torque reduction

3092

TIME/date: time out

Control dates (day/month/year etc.) timed out

Response: the data is captured at the time the timeout

3093

TIME/date: reserved bits and bytes

Message time/date does not pass in the reserved field 1

Reaction system: no

3099

Main pressure sensor

Checking the voltage limits (supply voltage and voltage sensors) and AD blocking

Response: extradition equivalent: 800 bar, DBV is opened, the engine continues working with 800 bar

pressurized. Limitation: D08:2000 m 1; 100 mg/day, D20:130-150 mg/day, D26:180 mg/day

3100

Sensor low fuel pressure (supply pressure)

Check the limits of voltage (voltage) and AD blocking

3671

EEPROM read failure

EEPROM checksum is wrong because the EEPROM is defective or preserve during the last inertial progress was interrupted

3673

CAN module 2 (OBD-CAN)

Off condition tyres CAN module 2

Note. In block EDC7 C32 Master/Slave OBD-CAN be connected to Pin 25 (185 wire) and 32 Pin (wire 186) Slave control unit, and the A-CAN (CAN handle exhaust gases) - to Pin 25 (wire 191) and 32 Pin (wire 192) Master control unit

Response: no communication with the OBD socket

3673

CAN module 2 (Master-Slave-CAN)

Off condition tyres CAN module 2

Response: the Slave control unit blocks the volume of injected fuel, the engine continues to operate with a single block of cylinders (half power)

Note. In block EDC7 C32 Master/Slave bus M/S-CAN (connection Master control unit with control unit Slave) is connected to Pin the A27 and Pin the A45. In block EDC7 C32 engine in-line with the system of MAN AdBlue ® A-CAN bus (CAN handle exhaust gases) is connected to Pin the A27 (wire 191) and Pin 45 (192 wire)

3674

FFR1: disabling the memory block in bytes/8 5-8 bit

FFR passing an incorrect value

Response: no disable block cylinder heads, V-engines Master/Slave

3676

The erroneous excess disables the mechanism (Afterrun Test)

Check disable output stage injectors in mode of the inertial movement

The reaction of the system: the motor stops

3678

Voltodobavochnoe voltage capacitor unit 1

Voltodobavochnogo voltage control for voltage, short circuit limits and reliability

3679

Voltodobavochnoe voltage capacitor unit 2

Voltodobavochnogo voltage control for voltage, short circuit limits and reliability

3687

Pressure limiting valve not opening

Checking the pressure limiting valve opening

The reaction of the system: stop the engine

3693

Voltodobavochnoe voltage

Voltage to turn on too little injector

Reaction system: preliminary, primary and secondary injection

3732

Gradation of malfunctions to initialize test (surge)

Overvoltage test device defective 3735

The internal temperature of the EDC control unit

Check voltage limits and AD blocking

Reaction system: issuing a backup option: 60° c

3736

Off output stage hardware EDC

Malfunction in protective lines of communication or high voltage

The reaction of the system: stop the engine

3737

Initializing in Master/Slave mode

Check Master/Slave with the ignition on

Response: no, engine runs fine

3738

Irregularity of rotation too high: 4-cylinder engine: Cyl. 1; 6-cylinder engine: Cyl. 1; 8-cylinder engine: Master cyl. 1, the Slave cyl. 5; 10-cylinder engine: Master cyl. 1, the Slave cyl. 6; 12-cylinder engine: Master cyl. 1, the Slave cyl. 12

Injection volume deviation on the corresponding cylinder

3739

Irregularity of rotation too high: 4-cylinder engine: Cyl. 3; 6-cylinder engine: Cyl. 5; 8-cylinder engine: Master cyl. 2, Slave cyl. 7; 10-cylinder engine: Master cyl. 5, Slave

cyl. 10; 12-cylinder engine: Master cyl. 5, Slave cyl. 8

Injection volume deviation on the corresponding cylinder 3740

Irregularity of rotation too high: 4-cylinder engine: Cyl. 4; 6-cylinder engine: Cyl. 3; 8-

cylinder engine: Master cyl. 3, Slave cyl. 6; 10-cylinder engine: Master cyl. 2, Slave cyl. 7; 12-

cylinder engine: Master cyl. 3, Slave cyl. 10

Injection volume deviation on the corresponding cylinder

3741

Irregularity of rotation too high: 4-cylinder engine: Cyl. 2; 6-cylinder engine: Cyl. 6; 8-cylinder engine: Master cyl. 4, the Slave cyl. 8; 10-cylinder engine: Master cyl. 3, Slave

cyl. 8; 12-cylinder engine: Master cyl. 6, Slave cyl. 7

Injection volume deviation on the corresponding cylinder 3742

Irregularity of rotation too high: 6-cylinder engine: Cyl. 2; 10-cylinder engine: Master cyl. 4, the Slave cyl. 9; 12-cylinder engine: Master cyl. 2, Slave cyl. 11

Injection volume deviation on the corresponding cylinder

3743

Irregularity of rotation too high: 6-cylinder engine: Cyl. 4; 12-cylinder engine: Master cyl. 4, the Slave cyl. 9

Injection volume deviation on the corresponding cylinder

3744

Output stage Highside EGR butterfly valve

Check the output stage a short circuit after mass or + Ubat and open circuit line 3745

Output stage pressure adjuster Highside

Check the output stage a short circuit after mass or + Ubat and open circuit line 3746

Output stage Highside exhaust gas recirculation

Check the output stage a short circuit after mass or + Ubat and open circuit line 3748

Output stage Highside dosing unit high pressure pump

Check the output stage a short circuit after mass or + Ubat, cut line

Reaction system: disable output stage (reversible) DBV opens, the engine continues working with 800 bar pressurized. Limitation: D20:150 mg/day, D26:180 mg/day

3749

Output stage boost Highside engine valve

Check the output stage a short circuit after mass or + Ubat, cut line

Output stage Highside Starter relay

Check the output stage a short circuit after mass or + Ubat, cut line 3752

Camshaft speed sensor (sensor/segment)

No signal or wrong sequence of pulses, the sensor has an incorrect polarity

Response: the engine continues working with incremental sensor. Need a longer standing time prior to check ignition timing

3753

Crankshaft rotation speed sensor (incremental transducer)

No signal or wrong sequence of pulses, the sensor has an incorrect polarity

Reaction system: engine continues to work with the segment sensor

3754

Signal error starting system

Failed benchmark

Response: the engine does not start/stalls

3755

The reliability of the fuel pressure

Control on wall gauge Reaction system: no

3756

Supply voltage reverse signal EGR

Check for a short circuit by mass or + Ubat and rupture of conductors

System reaction/comment: the sensor does not give a value or gives wrong values 3758

Error sending 2 messages in a dual control unit

Master-Slave data exchange (V engine). Possibly due to too heavy load tyres

Response: the Slave control unit blocks the volume of injected fuel until the restoration of communications; engine continues to run until the Master control unit, i.e. with the block of cylinders (half power)

3759

Error sending 3 messages in a dual control unit

Master-Slave data exchange (V engine). Possibly due to too heavy load tyres

Response: the Slave control unit blocks the volume of injected fuel until the restoration of communications; the engine continues to work with the Master control unit, i.e. with the block of cylinders (half power)

3760

Error sending messages in 4 twin control unit

Master-Slave data exchange (V engine). Possibly due to too heavy load tyres

Response: the Slave control unit blocks the volume of injected fuel until the restoration of communications; the engine continues to work with the Master control unit, i.e. with the block of cylinders (half power)

3761

Error sending 5 messages in a dual control unit

Master-Slave data exchange (V engine). Possibly due to too heavy load tyres

Response: the Slave control unit blocks the volume of injected fuel until the restoration of communications; the engine continues to work with the Master control unit, i.e. with the block of cylinders (half power)

3762

Error decoder CAN receive a master/detail relationship: reports CAMD-ANA timeout Master-Slave data exchange (V engine). The decoder CAN receive error Master/Slave Response: the Slave control unit blocks the volume of injected fuel until the restoration of communications; the engine continues to work with the Master control unit, i.e. with the

block of cylinders (half power)

3763

Error decoder CAN receive a master/detail relationship: reports CAMD-CMOL timeout Master-Slave data exchange (V engine). The decoder CAN receive error Master/Slave Response: the Slave control unit blocks the volume of injected fuel until the restoration of communications; the engine continues to work with the Master control unit, i.e. with the block of cylinders (half power)

3764

Error decoder CAN receive a master/detail relationship: reports CAMD-CONTROL timeout Master-Slave data exchange (V engine). The decoder CAN receive error Master/Slave Response: the Slave control unit blocks the volume of injected fuel until the restoration of communications; the engine continues to work with the Master control unit, i.e. with the block of cylinders (half power)

3765

Error decoder CAN receive a master/detail relationship: CAMD-FFR1 timeout Master-Slave data exchange (V engine). The decoder CAN receive error Master/Slave Response: the engine continues to run well, no reaction 3766

Error decoder CAN receive a master/detail relationship: CAMD-FFR2 timeout Master-Slave data exchange (V engine). The decoder CAN receive error Master/Slave Response: the engine continues to run well, no reaction 3767

Error decoder CAN receive a master/detail relationship: CAMD-FFR3 timeout Master-Slave data exchange (V engine). The decoder CAN receive error Master/Slave Response: the engine continues to run well, no reaction 3768

Error decoder CAN receive a master/detail relationship: CAMD-initialization Master-Slave data exchange (V engine). The decoder CAN receive error Master/Slave Response: the engine continues to run well, no reaction 3769

Error decoder CAN receive a master/detail relationship: reports CAMD-LIMIT timeout Master-Slave data exchange (V engine). The decoder CAN receive error Master/Slave Response: the Slave control unit blocks the volume of injected fuel until the restoration of communications; the engine continues to work with the Master control unit, i.e. with the block of cylinders (half power)

3771

Master/Slave CAN fail in twin control unit

Master or Slave failed when receiving from FFR-CAN

Reaction system: dual control unit sends messages through Master/Slave-CAN 3772

Checking, kl. 15 Master-Slave

Recognition check ignition Master and Slave units

3773

Failed to change the operating mode Master-Slave

Check the operating mode between Master and Slave

3775

Check arterial pressure

Check for too high (1) or too low (2) rail pressure

Reaction system: to 1: pressure limiting valve opens the impetus. To 2: the motor stops due to abnormal arterial pressure. Limitation: D08:2000 m 1; 100 mg/day, D20:130-150 mg/day, D26:180 mg/day

3776

Positive difference regulation

Rail pressure too low cannot handle

Response: the problem of controlling the fuel feed, the engine may stop. Limitation: D08:100 mg/day, D20:150 mg/day, D26:180 mg/day

3777

Negative regulation of difference

Too high pressure Road cannot handle

Response: the problem in reverse discharge fuel pressure limiting valve may open

3778

Pressure Rail: leaked under the regime of forced idling

Check for leaks in the hydraulic hydraulics high pressure impact

Response: the problem in reverse discharge fuel pressure limiting valve may open. Limitation:

D08:100 mg/day, D20:130-150 mg/day, D26:180 mg/day

3779

Pressure Rail: Leaked because of the amount of compensation

Check for leaks of high-pressure hydraulics

Reaction system: high pressure side UN-pressurized, engine stalls, power shortage, danger of

fire. Limitation: D08:100 mg/day, D20:130-150 mg/day, D26:180 mg/day

3780

Rail pressure: high controller output at idle

Pressure limiting valve is open (too high pressure)

Checking the pressure limiting valve opening

Reaction system: Backbone pressure 700-800 bar. Limitation: D08:2000 m 1; 100 mg/day,

D20:150 mg/day, D26:180 mg/day

3782

Dynamics of fuel supply pressure

Check for uneven supply pressure

Response: you might have air in the system

3783

FFR2: error in the binary digit specified acceleration NORD (electronic control noise NORD = NOise ReDuction)

Electronic noise reduces radiation noise.

A valid response acceleration engine is not exceeded at the expense of injection, torque is limited, as well as radiation noise

3784

error in the binary digit Smoke-ID

Can-message for admission from the FFR to select characteristics of smoke when a disconnected exhaust gas recirculation

3785

Check the pollen filter/PM-Kat

Exhaust gas pressure drop is too high or too low

Response/Description: Too highly: clean filter. Too low: dust filter/PM-Kat is missing or burned out

3786

The limits of temperature dust filter

Filter temperature during an authoritative restore is too high or too low

Response: too high: lower power. Too low: no

3787

Lack of recovery dust filter

Failure of an authoritative restore

Reaction system: e.g., unrecoverable oil filter contamination

3789

Differential pressure sensor or Comparative exhaust pressure sensor

Check voltage limits and AD blocking

Response: the prescribed amount equivalent

3790

Accuracy pressure difference or difference of relative pressure of exhaust gases

The sensor is faulty, if speed = 0 EXHAUST GAS pressure is above a certain threshold or the pressure drop at two speeds is below a certain threshold.

3792

EXHAUST GAS temperature sensor EXHAUST GAS before it is processed

Check voltage limits and AD blocking

Response: the prescribed amount equivalent

3793

Exhaust gas temperature sensor after further processing the waste gas, physical parameters Check for poor contact or reliability of this rate of change of temperature, too high or low temperature

3794

Exhaust gas temperature sensor after further processing OG

Check voltage limits and AD blocking

3795

Butterfly valve AG

Specified and actual flap position do not match (at an undisclosed D08)

3797

Output stage Highside lambda probe

Check the output stage a short circuit after mass or + Ubat, cut line

3798

Output stage lamps OBD (MIL)

Diagnosis is impossible

3802

Output stage Highside shut-off valve the compressed air (disconnecting the compressed air valve)

Check the output stage a short circuit after mass or + Ubat, cut line

3803

Error sending CAN1 (FFR/EDC-CAN)

Error sending the CAN engine (possibly due to a too heavy load tyres)

Response: information message EDC1 or EDC2 or the FFR EDC3 missing

3804

Error sending CAN1 (FFR/EDC-CAN)

Welcome to one of the messages, FFR2 FFR1, FFR3 or time/date from FFR impossible

Reaction system: FFR specified values are not converted

3805

Error sending CAN2 (Master/Slave-CAN)

Master-Slave data exchange (V engine) violated). Possibly due to too heavy load tyres Response: the Slave control unit blocks the volume of injected fuel until the restoration of communications; the engine continues to work with the Master control unit, i.e. with the block of cylinders (half power)

3806

Timeout error CAN2 (OBD-CAN)

Failure to connect with the power socket OBD

Note. In block EDC7 C32 Master/Slave system MAN AdBlue ® bus OBD-CAN be connected to Pin 25 (185 wire) and 32 Pin (wire 186) Slave control unit and A-CAN bus (CAN handle exhaust gases) — to Pin 25 (wire 191) and 32 Pin (wire 192) Master control unit 3806

Timeout error CAN2 (Master-Slave-CAN)

Master-Slave data exchange (V engine) violated). Reception error decoder CAN Master/Slave Response: the Slave control unit blocks the volume of injected fuel until the restoration of communications; the engine continues to work with the Master control unit, i.e. with the block of cylinders (half power)

Note. In block EDC7 C32 Master/Slave bus M/S-CAN (connection Master control unit with control unit Slave) is connected to Pin the A27 and Pin the A45. In block EDC7 C32 engine inline with the system of MAN AdBlue ® A-CAN bus (CAN handle exhaust gases) is connected to Pin the A27 (wire 191) and Pin 45 (192 wire)

3807

Error sending FFR1 (FFR/EDC-CAN)

FFR passes FFR1 wrong value

3808

Error sending FFR2 (FFR/EDC-CAN FFR passes FFR2 wrong value

3809

Error sending FFR3 (FFR/EDC-CAN)

FFR passes in FFR3 invalid value

3810

Date/time error (FFR/EDC-CAN)

FFR sends an invalid numeric value

Response: there is no time

3811

Identification of exhaust gas temperature EXHAUST GAS before it is processed

Monitoring for probe deflection when the ignition is switched on, i.e., falls after stopping the engine exhaust gas temperature to ambient temperature. In the course of operation control for the wrong sensor: at low throttle sensor shows too high temperature and under high load too low

3812

Identification of the waste gas temperature after further processing the waste gas Monitoring for probe deflection when the ignition is switched on, i.e., falls after stopping the engine exhaust gas temperature to ambient temperature. In the course of operation control for the wrong sensor: at low throttle sensor shows too high temperature and under high load too low

3813

Monitoring Starter (Starter protection device)

Monitoring the duration of start-up

Reaction system: depending on the response time of the starter in the control unit is determined by the heat starter. If the Starter is activated for longer than 30 seconds, the engine does not start, then the display shows fault message SPN 3813. This fault message is displayed while the starter will not be cooled sufficiently alleged. When you click through 30 seconds message actively within 10 minutes. In addition, this fault has no effect, and the fault message disappears automatically after a specified time

Registration disable duration control units

Definition and time control power on/off and duration of outages. Could not determine the duration of outages

Response: this fault appears if during the shutdown during the time of the follow-up work, the engine restarts. In addition, this fault has no effect and becomes inactive when entering software version V27

3819

CAN module 3 (CAN handle exhaust gases)

Off condition tyres CAN module 3

Note. In block EDC7 C32 engine in-line with the system of MAN AdBlue ® A-CAN bus (CAN handle exhaust gases) is connected to Pin the A27 (wire 191) and Pin 45 (192 wire). In block EDC7 C32 Master/Slave M/S-CAN (connection Master control unit with control unit Slave) is connected to Pin the A27 and Pin 45

3819

CAN module 3 (CAN Master-Slave exhaust gas processing)

Off condition tyres CAN module 3

Note. In block EDC7 C32 Master/Slave system MAN AdBlue @ A-CAN (CAN handle exhaust gases) is connected to Pin 25 (wire 191) and 32 Pin (wire 192) Master control unit, and OBD-CAN — to Pin 25 (185 wire) and 32 Pin (wire 186) the Slave control unit 3820

Byte-wise CAN check 1 (oil temperature and ambient air)

CAN check 1 (oil temperature and ambient air) for an error in the binary. At least one of these messages CAN unreliable

3821

Byte-wise CAN check 3 (CAN handle exhaust gases)

CAN control 3 (temperature of exhaust gases, the level of AdBlue and AdBlue temperature) for an error in the binary. At least one of these messages CAN unreliable

Note. In block EDC7 C32 engine in-line with the system of MAN AdBlue ® A-CAN bus (CAN handle exhaust gases) is connected to Pin the A27 (wire 191) and Pin 45 (192 wire). In block EDC7 C32 Master/Slave M/S-CAN (connection Master control unit with control unit Slave) is connected to Pin the A27 and Pin 45

3821

Byte-wise CAN check 3 (CAN Master-Slave exhaust gas processing)

CAN control 3 (temperature of exhaust gases, the level of AdBlue and AdBlue temperature) for an error in the binary. At least one of these messages CAN unreliable

Note. In block EDC7 C32 Master/Slave system MAN AdBlue @ A-CAN (CAN handle exhaust gases) is connected to Pin 25 (wire 191) and 32 Pin (wire 192) Master control unit, and OBD-CAN — to Pin 25 (185 wire) and 32 Pin (wire 186) the Slave control unit 3822

CAN timeout error 3 (CAN handle exhaust gases)

CAN control 3 for timeout errors. Welcome to one of the messages is not possible: IEC, ATI, DM1-DCU, TSC1-DCU

Note. In block EDC7 C32 engine in-line with the system of MAN AdBlue ® A-CAN bus (CAN handle exhaust gases) is connected to Pin the A27 (wire 191) and Pin 45 (192 wire). In block EDC7 C32 Master/Slave M/S-CAN (connection Master control unit with control unit Slave) is connected to Pin the A27 and Pin 45

3822

CAN timeout error 3 (CAN Master-Slave exhaust gas processing)

CAN control 3 for timeout errors. Welcome to one of the messages is not possible: IEC, ATI, DM1-DCU, TSC1-DCU

Note. In block EDC7 C32 Master/Slave system MAN AdBlue ® A-CAN (CAN handle exhaust gases) is connected to Pin 25 (wire 191) and 32 Pin (wire 192) Master control unit, and OBD-CAN — to Pin 25 (185 wire) and 32 Pin (wire 186) the Slave control unit 3823

Disruption on multiple cylinders misfiring

3830

Status of interruptions in ignition 4-cylinder engine: cylinder 1; 6-cylinder engine: cylinder 1; Slave 8-cylinder engine: 5 cylinder; 10-cylinder engine: 6 cylinder; 12-cylinder engine: 12 Cylinder

3831

Status of interruptions in ignition 4-cylinder engine: cylinder 3; 6-cylinder engine: 5 cylinder; Slave 8-cylinder engine: cylinder 7; 10-cylinder engine: cylinder 10; 12-cylinder engine: 8 Cylinder

3832

Status of interruptions in ignition 4-cylinder engine: 4 cylinder; 6-cylinder engine: cylinder 3; Slave 8-cylinder engine: 6 cylinder; 10-cylinder engine: cylinder 7; 12-cylinder engine: cylinder 10

3833

Status of interruptions in ignition 4-cylinder engine: cylinder 2; 6-cylinder engine: 6 cylinder; Slave 8-cylinder engine: 8 cylinder; 10-cylinder engine: 8 cylinder; 12-cylinder engine: cylinder 7

3834

Status of interruptions in ignition 6-cylinder engine: cylinder 2; Slave 10-cylinder engine: 9 cylinder; 12-cylinder engine: cylinder 11

3835

Status of interruptions in ignition 6-cylinder engine: 4 cylinder; Slave 12-cylinder engine: 9 Cylinder

3836

Lambda probe value determination, physical parameters

Check for inadequate contact or the veracity of the rate of change of the signal

3837

Lambda sensor value control

Control voltage limits and AD blocking

3838

Lambda sensor internal resistance, physical parameter

Check for inadequate contact or accuracy internal resistance changes speed

3839

The internal resistance of the lambda probe

Control voltage limits and AD blocking

3843

The authenticity of the refrigerant temperature

Monitoring for probe deflection when the ignition is switched on, i.e., falls after stopping the engine exhaust gas temperature to ambient temperature. In the course of operation control for the wrong sensor: at low throttle sensor shows too high temperature and under high load too low

3844

The veracity of the charge air temperature before the cylinder inlet (after the AGR) Monitoring for probe deflection when the ignition: falls after stopping the engine temperature before cylinder intake to the temperature of the refrigerant. In the course of operation control for the wrong sensor (temperature should not be too significantly deviate from the charge air temperature in front of the engine)

3845

Reliability of ambient temperature

Monitoring for probe deflection when the ignition, i.e. falls after stopping the engine temperature ambient temperature refrigerant Wednesday. In the course of operation control for the wrong sensor (temperature should not be too significantly deviate from the charge air temperature in front of the engine)

3846

Control unit configuration

Configuration control Master-Slave control units

3847

Charge air temperature sensor after the radiator (nadduvochnoj trumpet)

Control voltage limits and AD blocking

3849

SCR catalyst is not installed

Monitoring during the operation for smoke exhaust gas sensor (if high load is measured too low temperature, mean, not zadymlen).

3850

Rejection situation closed exhaust gas recirculation system

Adaptation of the zero point is invalid

3851

Flap position sensor EGR

Control voltage limits and AD blocking

3852

Identification of AGR on temperature

The temperature of the charge air cooler cylinder intake before too far deviates from the radiator temperature after

3853

Constant deviation values adjustable AGR with regulation

Too substantial difference adjustment

3854

EDC's internal temperature sensor 2

Control voltage limits and AD blocking

3855

Lambda probe wires

Check for a short circuit by mass or + Ubat and rupture of conductors

3856

Lambda probe calibration

Control too high or too low amendment lambda probe

3857

SPI communication lambda probe

Monitoring for errors control units. Block communication failure processing results with the main computer.

Communication data handling block lambda probe with the main computer through the interface SPI (Serial Peripheral Interface). The module regulates the reading and downloading internal register block lambda sensor data processing on demand software 3858

Lambda probe temperature

Check for too high (800) or too low (600 c) temperature probe

3859

Lambda probe temperature Calibration

Check for too high or too low temperature amendment

3863

Shift control

Duration of injector level settings in the mode of forced idling too high.

In certain conditions of use control shift identifies the actual duration setting cascade injectors on maximum duration settings valid for the actual number of revolutions.

Response: If a failure occurs, the faulty working control unit is closed and you are recovering (resetting the control unit)

3864

Injection control P1

The battery voltage is not sufficient for the first preliminary injection

Response: the first pre-injection P1 is blocked

3865

Injection control P2

The battery voltage is not sufficient for the second pre-injection

Response: Second pre-injection P2 is blocked

3866

Injection control M1

The battery voltage is not sufficient for the second main injection

Response: the second main injection M2 blocks

3867

Injection control PO

The battery voltage is not sufficient for post-injection

Reaction system: post-injection P0 is blocked

3868

Identification of charge air temperature after the heat sink

Monitoring for probe deflection when the ignition, i.e. falls after stopping the engine temperature charging air to a temperature of the refrigerant. In the course of operation control for the wrong sensor (when two different boost pressures should be measured with two different temperature readings)

3871

Identification of internal temperature of EDC control unit

Monitoring for probe deflection when the ignition: falls after stopping the engine, the inside temperature of the EDC to the temperature of the refrigerant.

3872

Identification of internal temperature control unit 2 EDC (temperature for cooling angle) Monitoring for probe deflection when the ignition: falls after stopping the engine, the inside temperature of the refrigerant temperature before EDC 2.

3873

Recovery control

Unable to determine the status of EDC control unit. Made reset

3874

Volume correction factor is too big: segment 0

Injector is dirty or is leaking

3875

Volume correction factor is too big: segment 1

Injector is dirty or is leaking

3876

Volume correction factor is too big: segment 2

Injector is dirty or is leaking

3877

Volume correction factor is too big: segment 3

Injector is dirty or is leaking

3878

Volume correction factor is too big: segment 4

Injector is dirty or is leaking

3879

Volume correction factor is too big: segment 5

Injector is dirty or is leaking

3880

12 in the output stage for LIN

3919

Error state NOx sensor heating

Check for short circuits, conductors breaks and accuracy

3920

Error state NOx concentration

Check for short circuits, conductors breaks and accuracy

3921

An error state, the concentration of O2

Check for short circuits, conductors breaks and accuracy

3923

Coolant temperature 2

Check for inadequate contact or reliability of this temperature is too high or low temperature 3925

Coolant temperature sensor 2

Check voltage limits and AD blocking

3926

Gradient control RDS (pressurized)

Check for insufficient contact signal from arterial pressure

3927

Lambda probe is not installed in the pipeline

The measured value of the lambda probe is too low

3929

EGR control with lambda sensor (error MIL)

MIL request without locking the AGR; MIL request unblocking the AGR; directly query MIL lock EGR; directly query the MIL malfunction AGR.

To diagnose the NOx control system checks the value of the lambda probe. Depending on the limit values and the State of the EGR is determined by the need to configure MIL lamp and reduction of power.

Response: If the limit value is exceeded, the lambda probe is sent to the query MIL 3930

EGR control with lambda sensor (bug PR = Power-Reduction)

Request PR without locking the AGR; request blocking PR AGR; directly query the PR lock EGR; directly query the PR EGR malfunction.

To diagnose the NOx control system checks the value of the lambda probe. Depending on the limit values and the State of the EGR is determined by the need to configure MIL lamp and power reduction (PR = Power Reduction = decrease of engine power). If lambda probe control

detected insufficient EGR ratio and, as a consequence, the NOx concentration is too high, then dropping the torque (PR)

Response: If the limit value is exceeded, the lambda probe is sent to request power engines 3931

The ultimate step PWM1

Check the ultimate stage for mass or short circuit + Ubat, rupture of conductors 3932

The ultimate step PWM30

Check the ultimate stage for mass or short circuit + Ubat, rupture of conductors 3936

Boost pressure too high

The maximum boost pressure is exceeded, depending on speed and valve position 3938

Lambda sensor adapts

Check for too high or too low the correction factor.

Lambda probe adaption function serves to improve measuring accuracy of oxygen concentration and calculated on the basis of measurement values of the lambda sensor, i.e. to achieve regulatory accuracy control NOx without risk related messages about malfunctions when healthy exhaust gas recirculation lambda probe calibration is performed in mode forced idle the engine until the oxygen content of the ambient air. Thus, the offset tolerance and deviation from the sensor software version of the control unit

3942

Boost pressure after charge air cooler, low pressure

Check for inadequate contact or the veracity of the rate of change of the charge pressure 3943

Boost pressure sensor after the low pressure charge air cooler

Check voltage limits, AD blocking, and credibility

3944

Charging air temperature after charge air cooler, low pressure

Check for poor contact or reliability of this rate of change of temperature, too high or low temperature

3945

Charge air temperature sensor after the low pressure charge air cooler

Check voltage limits, AD blocking, and credibility

3946

High pressure air cooler

3947

Low pressure air cooler

3963

Global error LIN

Checking for the presence of a signal

Note. Naval engines only

3964

LIN timeout error

Checking for the presence of a signal

Note. Naval engines only

3965

Error state LIN

Checking for the presence of a signal

Note. Naval engines only

3966

Self-diagnosis oil level probe

Checking for validity

Note. Naval engines only